分享至手机分享至手机
关注展会官微关注展会官微

Share to Mobile

您的位置:首页>新闻中心>行业资讯

行业资讯

传递行业最新前沿资讯

参观登记

相关内容

  • 晶粒度对航空发动机某件高温持久性能的影响

    迷宫轴是某飞机发动机上的关键零件之一,在发动机工作时主要起到阻尼减振作用,对材料提出了较高的要求。目前该零件材料为GH500高温合金,是以镍-铬-钴为基的时效强化型高温合金,加入铝、钛沉淀强化,并用钼固溶强化,合金有较好的耐热腐蚀性能和长期组织稳定性,其使用温度一般不超过870℃,短时可达980℃;适用于制造燃气涡轮发动机的涡轮转动部件及承力件。因此,对材料为GH500高温合金的零件热处理工艺参数控制,尤其是对高温持久性能指标提出了更高的要求。

  • 3D打印技术碰上柔性压电陶瓷复合材料会发生什么?

    为了拓宽压电材料在柔性感知等领域的应用,需要开发出兼具机械柔韧性和对环境机械振动或外界刺激做出响应的柔性压电陶瓷复合材料。

  • 汽车金属的腐蚀及防腐方法

    随着汽车市场的不断扩大和竞争日益激烈,用户对车身用材及涂装要求越来越高,汽车用品的防腐蚀质量也越来越受到重视。汽车零部件制造所用的材料以金属为主,在各种使用环境条件下,金属零部件的腐蚀是难以避免、普遍存在的问题。

  • 纳米陶瓷涂层的性能

    传统陶瓷材料硬度高、耐高温、耐腐蚀,但脆性大、结合强度低、韧性差易出现裂纹等缺点,应用存在较大限制。随着纳米技术的发展,将纳米技术和涂层技术相结合,能够发挥其综合优势。

陶瓷烧结是坯体在高温下致密化过程和现象的总称。随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。烧结的推动力为表面能。烧结可分为有液相参加的烧结和纯固相烧结两类。烧结过程对陶瓷生产具有很重要的意义。为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。如添加少量二氧化硅促进钛酸钡陶瓷烧结;又如添加少量氧化镁、氧化钙、二氧化硅促进氧化铝陶瓷烧结。(百度百科)


陶瓷烧结是坯体在高温下致密化过程和现象的总称。随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。烧结的推动力为表面能。烧结可分为有液相参加的烧结和纯固相烧结两类。烧结过程对陶瓷生产具有很重要的意义。为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。如添加少量二氧化硅促进钛酸钡陶瓷烧结;又如添加少量氧化镁、氧化钙、二氧化硅促进氧化铝陶瓷烧结。(百度百科)


烧结概述

烧结是利用热能使粉末坯体致密化的技术,其具体的定义是指多孔状态的坯体在高温条件下,表面积减小,孔隙率降低,力学性能(机械强度等)提高的致密化过程。坯体在烧结过程中要发生一系列的物理化变化,如膨胀,收缩,气体的产生,液相的出现,旧晶相的消失,新晶相的形成等。在不同的温度,气氛条件下,所发生变化的内容与程度也不相同,从而形成不同的晶相组成和显微结构,决定了陶瓷制品不同的质量和性能。坯体表面的釉层在烧结过程中也会发生各种物理化学变化,最终形成玻璃态物质,从而具有各种物理化学性能和装饰效果。



烧结的驱动力生坯,颗粒间只有点接触,强度很低,通过烧结,虽然在烧结时既无外力又无化学反应,却能使点接触的颗粒紧密结成坚硬而强度很高的瓷体。


烧结的动力是什么?是粉粒表面能。粉料在制备过程中,粉碎,球磨等机械性能或其它能量以表面能的形式储存在粉体中,造成粉料表面的许多晶格缺陷,使粉体具有较高的活性。粉体的过剩表面能:为烧结的推动力(烧结后总表面积降低3个数量级以上),烧结不能自动进行,必须对粉体加温,补充能量,才能使之转变未烧结体。除了推动力外,还必须有物质的传递过程,使气孔逐渐得到填充,使坯体由输送变得致密。1.蒸发和凝聚2.扩散3.粘滞流动与塑性流动4.溶解和沉淀在烧结过重可能有几种传质机理在起作用,在一定条件下,某种机理在起作用,条件改变,起主导作用的机理有可能随之改变。


固相烧结过程及机理


固相烧结一般可表现为三个阶段,初始阶段,主要表现为颗粒形状改变;中间阶段,主要表现为气孔形状改变;最终阶段,主要表现为气孔尺寸减小。固相烧结的主要传质方式是扩散传质。存在表面扩散,晶界扩散和体积扩散,不是每种扩散传质均能导致材料收缩或气孔率降低。物质以表面扩散或晶格扩散方式从表面传递到颈部,不会引起中心间距的减小,不会导致收缩和气孔率降低。颗粒传质从颗粒体积内或从晶界上传质到颈部,会引起材料的收缩和气孔消失,真正导致材料致密化。材料的组成,颗粒大小,显微结构(气孔,晶界)、温度、气氛及添加剂等会影响扩散传质,进而影响材料的烧结。



液相烧结过程及机理



液相烧结(liquid-phase sintering)是指在烧结包含多种粉末的坯体中,烧结温度至少高于其中的一种粉末熔融温度,从而在烧结过程中出现液相烧结过程。液相烧结优点是,能提高烧结驱动力,可制备具有控制的围观结构和优化性能的陶瓷复合材料。流动传质比扩散传质速度要快得多,烧结速率高,导致在更低的温度下获得致密的烧结体。液相烧结的具体条件:

1.液相相对固相颗粒的湿润

2.固相在液相中有相当的溶解度

3.液相具有合适的年度

4.具有相当数量的液相

液相烧结过程中的气孔排除,在烧结中期,相互连续的气孔通道开始收缩,形成封闭的气孔,气孔封闭后,进入最后阶段。在烧结末期,几个过程可以同时发生,包括晶粒和气孔的生长和粗化,液相组分扩散进入固相,固相、液相或气相间反应产物的形成。液相烧结在结构陶瓷、电子陶瓷领域大量应用。


特色烧结方法


热压烧结

热等静压

放电等离子烧结

微波烧结

反应烧结

爆炸烧结


热压烧结所需的成型压力仅为冷压法1/10,降低烧结温度和缩短烧结时间,抑制了晶粒的生长,能得到良好力学性能,电学性能的产品,能生产尺寸复杂,尺寸精确的产品,缺点也很明显,生产效率低,成本高。



热等静压工艺可以在更低的烧结温度下完成,抑制高温下很多不利的反应或变化,能够减少或无烧结助剂作用下,获得结构均匀,致密的烧结体,能够减少或排除烧结体的剩余气孔,提高材料的密度、强度,精确控制产品的尺寸与形状,免切割加工等工序。




烧结设备

烧结是在热工设备中进行的,这里热工设备指的是先进陶瓷生产窑炉及附属设备。烧结陶瓷的窑炉类型很多,同一制品可以在不同类型的窑内烧成,同一种窑也可以烧结不同的制品。主要常用的有间歇式窑炉,连续式窑炉和辅助设备。间歇式窑炉按其功能可分为电炉,高温倒焰窑,梭式窑和钟罩窑。连续式窑炉的分类方法有很多种,按制品的输送方式可分为隧道窑,高温推板窑和辊道窑。与传统间歇式窑炉相比较,连续式窑具有连续操作性,易实现机械化,大大改善了劳动条件和减轻了劳动强度,降低了能耗等优点。



最佳烧成参数确定

烧成制度包括温度制度,气氛制度和压力制度,影响产品的性能的关键是温度及其与时间的关系以及烧成时的气氛。其中温度制度,气氛制度需要根据不同的产要求而定,而压力制度是保证窑炉按照要求的温度制度与气氛制度进行烧成。制定烧成制度的依据:以坯釉的化学组成及其在烧成过程中的物理化学变化为依据;以坯体的种类、大小、形状和薄厚为依据;以窑炉的结构、类型、燃料种类以及装窑方式和装窑疏密为依据;以相似产品的成功烧成经验为依据。

温度制度的确定,包括升温速度,烧成温度,保温时间和冷却速度等参数。通过飞行坯料在烧成过程中性状变化,初步得出坯体在各温度或时间阶段可以允许的升、降温速度(相图,差热-失重、热膨胀、高温相分析、已有烧结曲线等)。升温速度:低温阶段,氧化分解阶段,高温阶段。烧成温度与保温时间:相互制约,可在一定程度上相互补偿,以一次晶粒发展成熟,晶界明显、没有显著的二次晶粒长大,收缩均匀,致密而又耗能少为目的。冷却速度,随炉冷却,快速冷却。

气氛制度的确定,根据坯料的不同,烧成时可采用氧化气氛、中性气氛或还原气氛、各阶段烧成气氛必须根据原料性能和制品不同要求来确定。坯体水分蒸发期,对气氛没有特殊要求;氧化分解与晶型转变期,为使坯体氧化分解充分,采用氧化气氛;玻璃化成瓷期,陶器大豆采用氧化气氛烧成,而瓷器的烧成可分为两种气氛:氧化气氛和还原气氛。采用还原气氛烧成的瓷器,还原开始前须有一个中火保温的强氧化气氛。此时采用强氧化气氛,还原初期要采用强氧化气氛,烧成后期改用弱还原气氛。

压力制度的确定,压力制度起着保证温度和气氛制度的作用。全窑的压力分布根据窑内结构,燃烧种类,制品特性,烧成气氛和装窑密度等因素来确定。倒焰窑中,最重要的是在烟道内形成微负压,窑底处于零压。隧道窑的预热带和烧成带都为负压,冷却带一般在正压下操作。